
DTIC
ELECT

APR 0 5 1989T. L

Runtime Aggregation of Recursion Relations

Joel Saltz and Harry Berryman

YALEU/DCS/TR-677
January 1989

DESTRIBUTION ST.LTEWE!NT A

Approved for public Telea
Dinmnloulaoi, U-B-mted -

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

89 4 (4 076

aO

AkI 5 1989.,

Yale University
Department of Computer Science

Runtime Aggregation of Recursion Relations

Joel Saltz and Harry Berryman

YALEU/DCS/TR-677
January 1989

This work has been supported in part by the U.S. Office of Naval Research
under Grant N00014-86-K-0310

Approved for public releasel

Distrbution UnliIted

Runtime Aggregation of Recursion Relations *

Joel Saltz
and Harry Berryman

Department of Computer Science
Yale University

New Haven, CT 06520

January 25, 1989

Abstract

In many modern algorithms, relatively regular problems are encoded using flexible general
purpose data structures. To obtain satisfactory performance on distributed memory architec-
tures, it is often necessary to reconstruct and exploit the underlying dependency structure. Wel 'r'
present a method to partition loops that have runtime dependencies that resemble uniform re-
currence equations. Loops of this type are often found, among other places, in solving sparse
triangular linear systems used for preconditioning in Krylov space iterative linear system solvers.

1 Introduction

The focus of this paper is to examine a method of partitioning loop structures arising from problems
such as sparse system solvers whose irregularity can result in poor performance on distributed
memory machines. In these problems, crucial details concerning loop dependences are encoded in
data structures, rather than being explicitly represented in the program.

Many modern algorithms have inner loops that specify recurrence equations whose dependenry
patterns are not determined until program execution, i.e. the dependencies in the recurrence equa-
tions are implicitly specified. An extremely important example of implicitly specified recurrence
equations are encountered when solving sparse triangular systems arising from incomplete factor-
izations of matrices formed from meshes of partial differential equations. Krylov space iterative
linear system solvers preconditioned using incompletely factored matrices are frequently used to
solve partial differential equations. Because these algorithms are iterative in nature, one must
repeatedly solve sparse triangular systems. Some operator splitting methods used in solving time
dependent partial differential equations also require triangular system solutions at every timestep.
[3]. In both iterative solvers and operator splitting methods, the recurrence equations arise from oj
meshes of partial differential equations and consequently have patterns of dependencies that reflect E
the structure of the underlying mesh.

There are a variety of other algorithms such as sparse incomplete numeric factorization and
dynamic programming that can also be written as recurrence equations with implicitly specified
dependencies.

*This work was supported by the U.S. Office of Naval Research under Grant N00014-86-K-0310 odes

Dist or
1 I

The partitioning algorithm is presented in the context of several running example dependency
graphs. In section 2 we describe how such a graph would be partitioned if global information
concerning the dependency structure were known. In section 3 we describe both how our parti-
tioning algorithm operates and the relationship between our algorithm and the partitioning method
described in section 2. This partitioning algorithm has been implemented on the Intel iPSC/1
and iPSC/2, references are provided that outline experimental results we have obtained using this
method.

2 Motivation for Partitioning Algorithm

To motivate the algorithm that will be presented, we first consider how we might partition a
two-dimensional recurrence equation

yij = ayi-lj + byij-1 + cyi+l,j-1 (1)

In Figure 2 we depict the dependencies characterizing the above recursion equation defined on
a 12 by 4 point rectangle in the upper quadrant. The dependence pattern in a uniform recurrence
equation can be described by direction vectors that represent the i, j coordinate difference between
the left hand side of the equation and the terms on the right hand side. In equation 1, those
direction vectors are w, = (1, 0), w2 = (0, 1) and w3 = (-1, 1).

This system has 16 computational wavefronts; variables satisfying i + 2j = k for constant
values of k can be solved for concurrently. If we partition the work in each wavefront equally
between two processors we will have 15 communication startups.

Aggregating or clustering the recursion equations to be solved can lead to a substantial reduction
in the costs of communication. Equations can be grouped into sets or clusters, each cluster is
treated as a single schedulable unit. Information is available from a cluster only when all of the
work assigned to the cluster has been completed.

The computation can be carried out by computing consecutive lines of domain points parallel
to w, = (1, 0) or a sequence of lines parallel to w 3 = (-1, 1). In Figure 2 we see that the lines
parallel to wi run parallel to the x axis, the lines parallel to W3 have a diagonal orientation. We
can compute values for all points ij in the subdomain satisfying j < k, or where i + j _< k2 for
positive constants ki or k2 . These lines are called separating hyperplanes [6].

Sets of consecutive lines or tubes can be used in forming clusters. In figure 3, we slice the domain
presented in figure 2 into consecutive tubes of two adjacent lines parallel to wi. Within each tube,
we form clusters by taking two adjacent lines parallel to W2 . We now have only 8 computational
phases requiring at most 7 communication startups.

In many numerical programs, data structures used are very flexible. Crucial details concerning
loop dependences are encoded in these structures, rather than being explicitly represented in the
program. This method of programming proves to be very advantageous because it facilitates: (1)
the production of portable general subroutines and (2) the judicious application of computational
resources to irregular numerical problems. Thus, in many cases of practical interest, we are pre-
sented with nest of loops representing a recursion equation with some form of adjacency list. While
the topic of parallelizing and partitioning systems of uniform recurrence equations has been well
studied, see for instance [7], [5] this work all assumes that global knowledge of the dependency
structure of a problem.

2

do i=l,n
do j=low(i),high(i)

x(i) = x(i) + s(j)*x(pointer(j))
end do

end do

Figure 1: Sparse Form of Recursion Equations

An example of this kind of flexible data structure is given by figure 1 this figure depicts a
Fortran code segment that could carry out the same computations as specified in equation 1
(subject to some appropriate set of boundary conditions).

To solve equation 1 using the program in Figure 1 on an n by m domain subject to some set of
boundary conditions, we could represent yij by x(i + nj). The elements of x required to compute

z(i) are specified by locations low(i) and high(i) in array pointer. For an index i representing

a domain point away from the domain boundary, the required elements of X are z(i - n),x(i - n + 1)
and x(i - I). The array s in Figure 1 stores in the appropriate order, copies of the multiplicands
a, b and c. Recursion equations whose dependencies are determined by adjacency list type data
structures will be termed implicitly specified recursion equations (ISRE).

There is a key difference between clustering recurrence relations, and partitioning various pos-
sibly irregular time-dependent problems such as solving partial differential equations on irregular

meshes, time driven simulations (e.g. battlefield simulations) [4],citeberger87. Time-dependent
problems involve a fixed sequence of computational steps. Each step is composed of parallelizable

work, the volume of which is independent of the partitioning. The communication flux between

steps is determined by the workload partitioning. When we partition recurrence equations we deter-

mine the collection of work that will be carried out during each computational step, and the number

of steps. In many ways this is a more difficult problem, because our clustering simulataneously

affects the degree of available parallelism, and the communication overheads.
The clustering method is critical. Consider the explicitly defined recursion equation

zij = ajzij-i + bizi-ij, (2)

on an X x Y point square (subject to suitable boundary conditions). It is commonly known that

one can concurrently solve for variables along anti-diagonals, i.e. variables yij satisfying i + j = k

for positive k [8]. The anti-diagonals constitute phases of the computation. Each phase suffers

communication startup costs, to propagate solutions needed to execute the subsequent phase. If we

consider each point in a phase to be a schedulable unit of work, this method employs no clustering

whatsoever. By contrast, we can cluster point solutions in a way that preserves parallelism, but

reduces the ndmber of phases (and hence communication startups). For example, the X x Y domain

can be clustered into independently scheduled rectangles, each of size m x n. Anti-diagonals of these

rectangles constitute a phase, and only X/m + Y/n - 1 phases are required. m and n should chosen

so that anit-diagonals have enough rectangles to distribute among processors.

3

I0 .

Figure 2: System of Recurrence Equations

Consider a 6 x 6 domain where the solution at a point y depends on the solutions of the two
points immediately below, and to the left of y. Figure 5 depicts a clustering that requires only
5 communication startups (as opposed to 11 for the unclustered case). Each aggregate has six
variable solutions. Aggregates are labeled with their phase number, where we see that the depicted
clustering completely serializes the execution. Figure 4 shows an alternate clustering that exploits
some parallelism and has two fewer phases.

3 Description of Partitioning Algorithm

We now present a method for partitioning ISRE computations. This method tacitly assumes a two-
dimensional problem domain. Generalization of the method to higher dimensions is straightforward.
The method presented here can be regarded as an extension of the method presented in [10].

First, an overview. We view the ISRE system as a directed acyclic graph G upon which we
apply three distinct operations. First, we partition the nodes into strings. Strings are chains of
nodes in G, and serve as a generalization of separating hyperplanes. A string is roughly orthogonal
to the computational wavefronts. Strings implicitly induce another graph, the string DAG; nodes
on a common string are represented by one string DAG node. The second operation condenses the
string DAG by combining "chains" of string DAG nodes into tubes. The third operation applies a
clustering algorithm to nodes of the original graph G. Clusters are constrained so that each cluster
lies within a single tube.

We will use a running example to illustrate how we partition a problem. Figure 6 depicts a
DAG arising from a system of uniform recurrence equations that might have been obtained from a
zero fill incomplete factorization of a matrix arising from the discretization of an partial differential
equation. Note that the domain of these recurrence equations is somewhat irregular.

4

Figure 3. Partitioned Recurrence Equations

%______________ .. -

%...............................

.** 4, %*~ *:::: *:. A

3 * *0" ~ 4 ~

Fiur 4: Faoal Patiio

5..

%S

Figure 5: Unfavorable Partition

3.1 Formation of Strings

We will first describe the process of forming strings. The string partition of the example DAG is
depicted in Figure 7. A start vertex of G is defined as a vertex not pointed to by any edge. The
vertices of S are chosen in the following way. A start vertex V of G is picked, all edges emanating
from V are removed; if a new start vertex V' is created through the removal of edges, V' is included
in the string. The process is continued recursively to remove as many vertices as possible from
G, assigning them to S. When the removal of a vertex exposes multiple start vertices, only one of
these start vertices is included in S. As each vertex V' is assigned to S, we mark the vertices W
remaining in G that had edges arising from V'. New strings are begun using available start vertices.
In picking vertices to incorporate in all strings after the first, priority is given to vertices previously
marked by other strings.

Strings have the following properties: (1) The points in each string are connected, (2) There is
no more than one point belonging to a given wavefront in a given string, (3) The graph describing
the inter-string dependencies is a directed acyclic graph and is called the string DAG.

In many cases the vertices in the DAG G are ordered in a manner that conveys geometrical
meaning. Frequently when matrices are generated from reasonably regular domains, points in a
domain are numbered in a very systematic manner. For instance in a rectangular domain, the
numbering would begin in a domain corner and a strip of points along one domain edge would be
numbered first. Consecutive strips of points in the domain would then be systematically numbered.
Typically, for a given problem, strings can be chosen in a number of different ways. In domains
that have been numbered in a systematic manner, it can be advantageous to maintain a convention
that prescribes how strings should be oriented. Ve choose strings that follow the pattern of domain
ordering, i.e. when more than one start vertex is created though the removal of edges, we choose
the start vertex with the lowest number.

6

A\ ---7\\..

Figure 6: Example DAG

3.2 Formation of Tubes from String DAG

We next perform a depth first traversal of the string DAG; in this traversal a node of the string
DAG can be visitcd only after all of its predecessors have been visited. During this traversal, the
string DAG is partitioned into a set of consecutively ordered tubes. A maximum of b strings are
assigned to each tube; a new tube is begun whenever the depth first traversal backs up and begins
a new path. In the running example we depict a string DAG and a partition of that DAG into
tubes. (Figure 7).

3.3 Formation of Clusters

The tubes identified above will now be used to constrain the choice of nodes that can be used in the
formation of clusters. Because each cluster is scheduled in an indivisible manner, we need to be very
judicious in how we choose -;ertices to incorporate into a cluster. Recall how Figure 5 illustrated a
choice of clusters that resulted in a completely sequential execution. To reduce the sequentializing
effects of inter-cluster dependencies, we add points so that each cluster is constrained to lie within
a tube. Figure 4 illustrated a choice of clusters satisfying this constraint. The tubes of clusters
produced here are analogous to the tubes described in section 2.

We want to choose clusters so that we reduce communication costs while maintaining as much
concurrency as we can. To motivate our methods for doing this, note how the clusters are chosen
in figure 3. Each tube could be sliced into lines of points forming separating hyperplanes, in this
example the new separating hyperplanes are at a 120 degree angle to the strings used in forming
the tube. We choose how many strings will be grouped together to form a cluster in the first tube.
For the problem in figure 3, the choice of how to group points into clusters in the other tubes
follows naturally from the choice made for the first tube.

Vertices that have no incoming edges arising from strings other than their own will be termed
boundary vertices. Vertices within a tube are incorporated into clusters in a fixed order. During the

7

Figure 7: String Partition, String DAG and Tube DAG

8

Fi.

Figure 8: Cluster DAG for Irregular Problem

Figure 9: Disadvantageous Cluster DAG for Irregular Problem

9

norma! operation of the clustering process, each new vertex inspected can either be incorporated
in the custer currently being form or can be used to begin a new cluster. The rules for deciding
whether to incorporate a vertex into a cluster depend on whether the vertex in question is a

boundary vertex. While all vertices in the first string of the string DAG are by definition boundary
vertices, vertices in other strings may be boundary vertices as well.

First consider how to go about deciding which non-boundary vertices to place in a cluster.
There is a DAG describing the data dependency relations between clusters. We do not want to
delay work involving any vertex V in a cluster C because of a possible dependence of another vertex
V' in C on some cluster in the cluster DAG. While clusters in 3 and 8 satisfy this property, the
clusters in figure 9 do not. We thus plan to incorporate into the cluster all vertices in the given tube
that do not have problematic dependencies on other clusters. In uniform recurrence equations in
a quadrant, the above constraint corresponds to matching up separating hyperplanes in each tube

to obtain a separating hyperplane of the domain as a whole. In regular problems, these constraints
lead to clusters of close to uniform size, for the sake of robustness one still specifies a maximal
cluster size that cannot be exceeded.

When we create clusters using boundary vertices, there is no natural constraint on cluster size.

We still need a mechanism to make sure that the cluster is appropriately shaped, this is described
in the detained algorithm description below. The overall granularity of the partition is determined
by the sizes of these clusters. This process is apparent in 4, where we choose a size of six for the
clusters on the boundary. Clusters obtained from Figure 7 are depicted in Figure 8. The clusters
labelled with the number 1 are the boundary clusters.

3.4 Detailed Description of Clustering

A more precise description of the clustering algorithm will now be presented. First some definitions.
We define the cluster wavefront for cluster Ci to be the wavefront of C in the cluster DAG.

The induced wave front of a vertex v is obtained as follows. Find the set of vertices U on which
v depends. Each of the vertices ui in U must already be assigned to some cluster Ci. The induced
wavefront of v is equal to one plus the maximum of the cluster wavefronts of the clusters Cj 0 C.

If all vertices in a cluster have the same induced wavefront, we obtain a partition like figure 8. In
contrast, in figure 9, we note that the cluster wavefront of an entire cluster must be increased due
to data dependencies involving just two vertices.

A vertex V is fair game for inclusion into a cluster C if 1) V has no unincorporated predecessors.
2) the ii;duced wavefront of V is less than or equal to that of C and 3) V belongs to the same tube
of strings as any other vertices already belonging to C.

We now present the method used to cluster vertices. Start with the highest numbered string in

a tube with a fair game vertex. This is the lead string. Remove a vertex from the lead string and
then remove all fair game vertices created. Continue this process until there are no more fair game
vertices in the lead string. At this point, we seek a new le-d string (again chosen as the highest
numbered string in the tube having a fair game node) and continue the clustering processes.

The above process is terminated under the following conditions: (1) there are no unincorporated
fair game vertices (2) the next vertex to be incorporated is a boundary vertex in a lead string and
the cluster size is larger than a specified constant Ki. (3) The cluster size is larger than another
specified constant K 2 .

The constant K, is used to specify granularity while the constant K 2 2! K 1 is used as a backup

10

condition to prevent the formation of extremely large clusters in irregular graphs.
In Figure 8, we have used K,1 = 4. Note that this does not mean that the clusters are all of

size 4.

3.5 Multiprocessor Mapping and Experimental Data

The cluster DAG, once formed must be mapped to the fragmented memory multiprocessor. The
computational work can be mapped to a multiprocessor in a variety of ways. One simple manner
of mapping work is to assign all clusters in consecutively numbered tubes to (where architecturally
feasible) physically adjacent processors. If there are more tubes than processors, the tubes are
assigned to processors in a wrapped manner. To obtain satisfactory results, it is essential that the
program that carries out the work specified by the clustering algorithm be constructed with great
care. We have written an extensively tested such a program on the Intel iPSC/2.

We have found that the optimizations described here can make a very substantial impact on
performance in solving sparse triangular systems that arise in the solution of a variety of partial
differential equations [1] , [9] and [2]. we have documented, for a variety of sparse triangular
systems, three fold differences in iPSC/2 execution times.

4 Conclusion

In many modern algorithms, relatively regular problems are encoded using flexible general purpose
data structures. To obtain satisfactory performance on distributed memory architectures, it is often
necessary to reconstruct and exploit the underlying dependency structure. We have presented and
illustrated a .-iethod to partition loops that have runtime dependencies that resemble uniform
recurrence equaions. An extremely important example of implicitly specified recurrence equations
are encountered when solving sparse triangular systems arising from incomplete factorizations of
matrices formed from meshes of partial differential equations.

References

[1] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental study of
methods for parallel preconditioned krylov methods. In Proceedings of the 1988 Hypercube
Multiprocessor Conference, Pasadena CA, January 1988.

[2] K. Crowley, J. Saltz, R. Mirchandaney, and H. Berryman. Run-time Scheduling and Execution
of Loops on Message Passing Machines. Report 89-7, ICASE, January 1989.

[3] S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for non-
symmetric systems of linear equations. Siam Journal on Numerical Analysis, 1983:345-357,
1983.

[4] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on
Concurrent Computers. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[5] L. Hyafil and H.T. Kung. The complexity of parallel evaluation of linear recurrences. JACM.
24, 1977.

11

[6] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform
recurrence equations. JACM, July 1967.

[7] H. T. Kung. In Parter, editor, Systolic Algorithms, 1984.

[8] L. Lamport. The parallel execution of do loops. CA CM, 17, 1974.

[9] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Principals of run-
time support for parallel processors. In Proceedings of the 1988 A CM International Conference
on Supercomputing , St. Malo France, July 1988.

[10] J. Saltz. Aggregation methods for solving sparse triangular systems on multiprocessors. SIAM
J. Sci. and Stat. Computation., to appear, 1989.

1

12

